Sequential Prediction of Social Media Popularity with Deep Temporal Context Networks
نویسندگان
چکیده
Prediction of popularity has profound impact for social media, since it offers opportunities to reveal individual preference and public attention from evolutionary social systems. Previous research, although achieves promising results, neglects one distinctive characteristic of social data, i.e., sequentiality. For example, the popularity of online content is generated over time with sequential post streams of social media. To investigate the sequential prediction of popularity, we propose a novel prediction framework called Deep Temporal Context Networks (DTCN) by incorporating both temporal context and temporal attention into account. Our DTCN contains three main components, from embedding, learning to predicting. With a joint embedding network, we obtain a unified deep representation of multi-modal user-post data in a common embedding space. Then, based on the embedded data sequence over time, temporal context learning attempts to recurrently learn two adaptive temporal contexts for sequential popularity. Finally, a novel temporal attention is designed to predict new popularity (the popularity of a new userpost pair) with temporal coherence across multiple time-scales. Experiments on our released image dataset with about 600K Flickr photos demonstrate that DTCN outperforms state-of-the-art deep prediction algorithms, with an average of 21.51% relative performance improvement in the popularity prediction (Spearman Ranking Correlation).
منابع مشابه
Unfolding Temporal Dynamics: Predicting Social Media Popularity Using Multi-scale Temporal Decomposition
Time information plays a crucial role on social media popularity. Existing research on popularity prediction, effective though, ignores temporal information which is highly related to user-item associations and thus often results in limited success. An essential way is to consider all these factors (user, item, and time), which capture the dynamic nature of photo popularity. In this paper, we p...
متن کاملRecurrent Neural Networks for Online Video Popularity Prediction
In this paper, we address the problem of popularity prediction of online videos shared in social media. We prove that this challenging task can be approached using recently proposed deep neural network architectures. We cast the popularity prediction problem as a classification task and we aim to solve it using only visual cues extracted from videos. To that end, we propose a new method based o...
متن کاملPredicting the Image Propagation Pathin Online Social Networks
Content popularity prediction has been extensively studied due to its importance and interest for both users and hosts of social media sites like Facebook, Instagram, Twitter, and Pinterest. However, existing work mainly focuses on modeling popularity using a single metric such as the total number of likes or shares. In this work, we propose Diffusion-LSTM, a memory-based deep recurrent network...
متن کاملDeveloping a Recommendation Framework for Tourist by Mining Geo-tag Photos (Case Study Tehran District 6)
With the increasing popularity of sharing media on social networks and facilitating access to location technologies, such as Global Positioning System (GPS), people are more interested to share their own photos and videos. The world wide web users are no longer the sole consumer but they are producers of information also, hence a wealth of information are available on web 2.0 applications. The ...
متن کاملOn the Prediction of Flickr Image Popularity by Analyzing Heterogeneous Social Sensory Data
The increase in the popularity of social media has shattered the gap between the physical and virtual worlds. The content generated by people or social sensors on social media provides information about users and their living surroundings, which allows us to access a user's preferences, opinions, and interactions. This provides an opportunity for us to understand human behavior and enhance the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017